지질 공학 프로젝트를 쉽게 수행

PLAXIS 2D 지질 공학 유한 요소 소프트웨어

PLAXIS 2D를 사용하여 지질 공학 엔지니어링 및 암석 역학의 변형 및 안정성에 대한 2차원 유한 요소 분석을 수행합니다. 

토목 및 지질 공학 엔지니어링 산업 분야의 엔지니어링 회사와 기관들은 굴착, 제방, 터널용 토대, 오일 및 가스, 광업, 저수지 지력학 등의 다양한 프로젝트를 위해 PLAXIS를 사용하고 있습니다.

주요 기능은 다음과 같습니다.

  • 재질 모델을 정확하게 보정합니다.
  • 벤틀리 생태계와의 상호 운용성이 향상되었습니다.
  • Python 스크립트를 사용하여 효율성을 향상시키기 위한 작업을 자동화합니다.
  • 유선형 모델링을 위해 CAD 파일을 가져와 시간을 절약합니다.
  • 탁월한 구성 모델 라이브러리로 신뢰성을 강화합니다.
  • 민감도 분석 및 매개변수 변형을 사용하여 더 많은 기능에 액세스합니다.
더 자세히 알아보기 +
User Quote
  • "The power to collaborate with design, construction, and the owner is where PLAXIS really shines."

    Brice Exley, P.E. Senior Associate Geotechnical Engineer Haley & Aldrich
    • PLAXIS 2D
    • 2D Fast and efficient finite element model creation
    • 2D Powerful and versatile post processing
    • 2D Realistic assessment of stresses and displacements
    • PLAXIS 2D
    • PLAXIS 2D
    • 2D Fast and efficient finite element model creation
    • 2D Powerful and versatile post processing
    • 2D Realistic assessment of stresses and displacements
    • Scripting Reference
  • Analyze factor of safety

    • Leverage our advanced strength reduction method analysis and accurately predict the degree of safety associated with the slope along with associated failure patterns. The strength reduction method is typically used for evaluating the safety of an embankment on soft soil with a high groundwater level and the impact of different construction rate. Safety factor evaluation analysis in PLAXIS can also be advantageously used in situations with strong structural interaction for which the evaluation of a failure mechanism on beforehand (as done in classical limit equilibrium analysis) cannot be achieved.
  • Apply absorbent model boundary conditions

    • Apply advanced model boundary conditions when dynamic analysis requires special boundary conditions. In addition to viscous boundaries, free-field and compliant base boundaries can also be selected to reduce spurious reflections of waves from reaching the model boundaries.
  • Automate repetitive tasks with native command line

    • Benefit from the additional access to specialized text commands that fully supports the PLAXIS modeling workflow and save valuable time in automating repetitive modeling tasks. Although all actions can also be accomplished through mouse clicks, the use of commands enhances the power of PLAXIS through automation workflows. Simply execute modeling operations and alternatively create PLAXIS model by alternatively entering text commands in the dedicated command line. Evaluate automatically generated text commands during interactive model-creating for further re-use or edition. Replay user-defined sets of text command for automated model creation.
  • Conduct dynamic analysis with earthquake data

    • In modeling the dynamic response of a soil or rock structure, the inertia of the subsoil and the time dependency of the load are considered. The time-dependent behavior of the load can be assigned through harmonic, linear, or table multipliers. Via table input, users can import real earthquakes signals to perform meaningful seismic design of jetties or foundations. Dynamic multipliers can be assigned independently in the x- and y-directions in PLAXIS 2D dynamics feature and x-, y-, and z-directions in PLAXIS 3D dynamics feature.
  • Define realistic and accurate initial conditions

    • Generate realistic initial stress and pore pressures fields in equilibrium with the soil weight through either K0-procedure or gravity loading. Automatically define state of over-consolidation for advanced constitutive models and set-up initial stresses in the soil body, considering both the influence of the weight of the material and the history of its formation. The field stress initial calculation complements the gravity-based initial stress definition and makes it easier to define the in-situ stress for the non-uniform deep ground conditions, such as those encountered in deep tunneling or reservoir geomechanics.
  • Determine stress change due to thermal loading

    • Analyze displacements or the rotation of stress due to temperature changes. Coupling between thermal loading and mechanical process is required when the temperature change in soils results in thermal stresses. An example is the deformation of a navigable lock due to sunlight absorption when the lock is empty.
  • Evaluate flow-deformation coupling through consolidation analysis

    • Precisely evaluate the mechanical process by which soil gradually changes volume in response to a change in pressure over time. Evaluate long-term settlement of foundations or earthworks over weak and non-permeable soil layer, such as marine clay. Safely evaluate possible technical risks associated with consolidation in areas like land reclamation, construction of embankments, tunnels, and basement excavation in clay.
  • Obtain accurate steady-state flow analysis for dewatering and groundwater control

    • Easily generate non-hydrostatic pore water pressure distribution in the initial hydraulic gradients or after dewatering. Leverage water-level definition for fast and straightforward generation of boundary conditions for groundwater flow analysis. Evaluate steady-state temperature distribution for underground cable system of retaining wall under severe climatic conditions.
  • Optimize ground freezing design

    • Whether the ground freezing is artificial to stabilize weak ground or natural, you can study the complex interplay between the velocity of groundwater flow, temperature of the freezing pipes, and their effects on the formation of an ice wall through the various boundary conditions.
  • Perform time-dependent flow analysis

    • Go beyond the default options of steady-state groundwater flow analysis PLAXIS Advanced with the PLAXIS Ultimate. Assign time dependent variation or fluxes to water levels, model boundaries, or soil boundaries to simulate various complex hydrological and/or thermal conditions. The input of the time dependent properties is based on harmonic, linear, or table functions. This allows seasonal variations of river water levels behind embankments and their effect on the overall slope stability to be modeled. Precipitation, wells, and drains can be included in the model, allowing pumping tests or other hydrological applications to be modeled.
Shopping cart
Choose the licensing option that works best for you. You can take advantage of perpetual, term, or Bentley’s new Virtuoso Subscription. A Virtuoso Subscription includes your software application bundled with expert services delivered by Virtuosity, a Bentley company.
PLAXIS Dig Deeper
Go #GeoWithBentley for Confident Solutions
Strengthen your credibility with trusted information and sound computation
더 자세히 알아보기
Bentley Communities
Engage with peers in geotechnical analysis for tips and tricks, best practices, and product support.