MOSES is an advanced suite of hydrostatic and hydrodynamic software that provides for the accurate calculation and simulation of offshore floating systems. Its analysis capabilities and scripting language can be applied in the frequency domain and time domain for both installation problems and in-place analysis of FPSOs and floating platforms. More than 30 years of focus on these specialized requirements have made MOSES the analysis mainstay for most of the world’s offshore installation projects. MOSES is available in three suites to suit all design office requirements: MOSES Enterprise, MOSES Advanced, and MOSES.

Integrated Modeling and Documentation Workflows
The CONNECT Edition provides a common environment for comprehensive project delivery and connects users, projects, and your enterprise. With MOSES CONNECT Edition, you now have a personal portal to access learning, communities, and project information. You can also share personal files including i-models and PDFs directly from your desktop with other users, or stage them for easy access from a Bentley mobile app, such as Structural Navigator. With the new project portal, your project teams can review project details and status, and gain visibility into project performance. With the CONNECT Edition, your project team may also wish to take advantage of the new ProjectWise® Connection Services including Project Performance Dashboards, Issues Resolution, and Scenario Services.

MOSES Enterprise:
Stability, Motions, Mooring, Structures, and Launch
The MOSES Enterprise suite provides a complete range of functions, from modeling of hulls and calculation of stability, to prediction of motions, mooring analysis, structural analysis, and jacket launch. This suite can be used for new or existing FPSO and platform studies, as well as for transportation and installation analysis. The software can import SACS models of topsides or cargo structures.

MOSES Advanced:
Stability, Motions, Mooring, and Structures
The MOSES Advanced suite provides both frequency domain and time domain prediction of vessel motions. This can be applied using either strip theory or radiation-diffraction panel methods of calculation. Mooring lines can be integrated including large displacement effects of mooring line deformations. The structural solver allows for structural analysis of topside structures or structural cargo.

MOSES:
Stability and Motions
The MOSES suite provides a highly capable and cost-effective package for stability assessment and motions analysis in the frequency domain. Hull and compartment modeling is included along with both strip theory and radiation-diffraction analysis methods.

MODULES:
MOSES Solver
All three suites include the MOSES Solver and MOSES Language modules – the platform on which all analysis capabilities depend. The unique, generalized solver allows the consideration of all types of forces acting on the floating system including hydrostatic, hydrodynamic, inertial, and mooring forces. The solver supports model inputs including section or panel definition of hull shapes, Morison elements, various kinds of taut or catenary mooring lines as well as beam and plate elements.

Connectors in MOSES are particularly flexible and effective. They provide a generalized way of describing connections between floating bodies, or to the ground, and include catenary mooring lines, tension- and compression-only nonlinear springs, rigid connectors such as pins and launchways, and even true nonlinear rod elements.

MOSES Language
The MOSES scripting language provides a unique, flexible, and powerful way of specifying system behavior and performing a series of analyses to consider different installation or operational conditions. In addition to providing specialized capabilities, the MOSES language is rich in general utilities for interactive reporting, graphing, viewing 3D models, and statistical interpretation.

- Model generation with validity checking
- Run complex analyses with a single command, including reporting
- Database capability with restart options
- Macros, loops, and conditional execution

Strip Theory
Strip theory provides a fast and proven way of predicting the motions of vessels. It is well suited for barge transports and any vessel that is slender in its L/B (length/beam) ratio.

- RAOs (response amplitude operators) at CG (center of gravity) or remote locations
- Standard and user defined spectra
- Statistical multipliers or storm duration definition
Basic Connectors
The Basic Connectors module provides a generalized way of modeling lifting slings, anchor lines, mooring lines, non-linear springs, pins, fenders, and any other item that connects two bodies together or connects a body to the ground. Connectors can be tension-only or compression-only and custom connectors can be defined.
- Lift, lower, or upend with multiple slings and hooks
- Activate or deactivate to simulate breaking or re-rigging
- Move anchors to achieve a specified tension
- Hold hooks at elevation or load while flooding or pumping
- Catenary mooring lines with buoys or clamp weights
- Nonlinear springs with tension or compression only
- Gaps, pins, and lines provide constraints to motion

Pipe & Rod Elements
When analyzing mooring line dynamics, the Pipe & Rod module allows accurate calculation of mooring line response taking into account large deflections. This allows modeling and analysis of anchor lines, mooring lines, TLP (tension leg platform) tendons, rigid risers, and pipelines.
- Large deflection beam capability
- Handles TLP tendons, rigid risers, and pipelines
- Mooring line dynamics are included
- Combine pipe assemblies with rollers

Structural Solver
The Structural Solver module enables structural analysis and spectral fatigue of topside or cargo structures. It supports beam and plate elements and can import structures from SACS.
- Linear, non-linear and frequency domain analysis
- Modal analysis using subspace iteration
- Modal analysis using subspace iteration
- Code checking to API, AISC, NORSOK, and ISO

Jacket Launch
The Jacket Launch module can be used to perform a six-degree-of-freedom time domain simulation of a jacket launch from a barge into water.
- Automated ballasting
- Winch and friction definitions
- Optional side launch

Generalized Degrees of Freedom
The Generalized Degrees of Freedom module is used to consider the effect of structural deformation and flexibility on buoyancy, frequency response, and loadout calculations. It can also be used to consider the hydrodynamic interaction between two vessels.

MOSES Editors
All MOSES suites include the MOSES smart language editor for managing scripts and data files, Hull Modeler for 3D interactive creation of hull shapes, Stability Modeler for compartmentation and load case management, Motions Modeler for environmental and mooring inputs, and Hull Mesher for graphical creation of structural models.